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Abstract. We study an attractive random walk called the SATW in one dimension and show
that the walk is diffusive. We show rigorously that asymptoticeﬂﬁ/g CN, whereS,z\, is the
average of the square of the number of distinct points visited by the wal steps. Since
(X12\,), the average square of the distance to the origin, is of the same orcﬁ%,r age get the
result that<X12V> o« N asymptototically.

The self-avoiding walk (SAW), and its variants such as the true self-avoiding walk (TSAW),
the kinetic self-avoiding walk etc, have been extensively studied as models of polymers [1-
9]. In a recent paper Sapozhinikov [10] proposed a kind of attractive random walk (SATW)
in which the probability for making a transition to a neighbouring site is proportional to
exp(—nu), whereu is a negative parameter and= 1 or 0 depending on whether the site to
which the transition is made has been visited earlier or not. Using plausible approximations,
he showed that the walk was diffusive in one dimension. However, in a recent paper, Fabio
and AaBo Reis [11], obtained results at variance with this. Using a series analysis of
exact enumeration studies up to 30 steps, they came to the conclusion that the walk shows
sub-diffusive behaviour itxﬁ) o« NV, v is less than one. Here, is the distance travelled

in N steps. According to them the exact valuevoflepends on the dimensionality and the
strength of the biasing parameter In this paper, we rigorously prove the following:

S2 > C,N. @

Here, S2 is the average of the square of the number of distinct points visited by an SATW
in N steps in one dimension and; is a constant of O(1). Since the walk is attractive,
(x2), the mean square distance afférsteps, is less than or equal . We also show
that asymptotically(X,zv) o'é S,zv. Combining the two, we get the desired result, namely

(X3) o« N.
Let Qy be the set of alV step one-dimensional SATWs= (0, x1, x2, ..., xy) Starting
from zero. Letp(w) be the probability of the walk,. We then have
xi+1(w) = x; (@) + & (). @
Here,§; (w) takes on values-1 or —1:
xZ (@) = xP(@) + 1+ 2x ()& (o) 3)
(xPi1) = (xF) + 1+ 2(x;). (4)
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Here ( ) denotes averaging over the set

N-1
(XF)=N+2> (xi&). ®)
i=0
Then, we have
() =N+ p) le (@) (). (6)
we

We note that the average over the second term cancels out for an unbiased ordinary random
walk. The only difference between an SATW and an ordinary random walk occurs when
x; happens to be an extremity that is

eitherx; > x; fork=012....,i—1
orx; < xi fork=0,12...,i—1 ©)

Using this as well as the fact that whepis at an extremity there is a bias for an inward
step, we get the inequalitycf\,) < N. Further since-|x; ()| < x;(w)&; (w)

(X)) =N =) p) Z |xi (@)]ind(i, w). ®)
we
Here indi, w) is a function which takes on values 1 or 0 depending on whether the SATW
is at an extremity at or not. We rewrite the equation as

>N - ZZ Z p(w)Dxl(w)und(z ). Q)

=01l= O ’112

Here, Qiﬁ;lz is the set of allN step SATWs which extend from/; to [,. Clearly, for all
such walks,|x;| < (I1 + 12),

>N - ZZ(M@ > p(w)Zmd(z ®). (10)

[1=0l,= mtel 12

We note thatZ’lv ind(i, w)(= K) is nothing but the total number of times the particular
walk took an inward step from an extremity. We now prove Y& ; /1, I5), the probability
that anN step SATW extending from-/; to I, makes exactlyk inward steps at extremities,
satisfies the inequality

q(K; 11, o) < expll(1+log[(K +1)/I])] + K log(«a) + [ log(B)] (11)

wherea = exp(—u)/(1 — exp(—u)) and 8 = 1/(1 + exp(—u)). Basically, the proof is
based on the fact that if a walk extending froni; to [, takes a total ofK inward steps
at the extremities, thesk steps as well as outward steps are fixed. It has at most two
options in the remaining — K — [ steps. So, the total number of such walks is less than
2WN=K=D p\(K). Here, Py(K) is the number of ways of distributing th& inward steps
among the lattice sites from—/; to I,.

More formally, let25;*"> be the set of allV step SATWsw = (0, x1, x2, . . . , xy) With
the following constraints

I = sup x; —Ili= inf x (12)

1<i<N 1<i<

k= kg, k—ly+21, ...,k 1,ks, ..., k) (13)
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wherek; is the number of stepsto [ — 1 (respectivelyl + 1) taken by the walk before
the first step/ to [ + 1 (respectivelyi — 1) when! is positive (respectively negative). We
consider all such walks with the additional restriction that

>
Y k=K. (14)
I=—1I1
All such walks can be mapped to stringsof length Ny(= N — K — ) as follows. Define
Vo= Y2, . UN,) (15)
where they,; take on valuest1 or —1 only. A stringé = (&, &, ..., &y) can easily be

generated witht; = x; — x;_;. From this string of lengthv, we delete the entrieg for
which x;_; is an extremity of the walk» to generate a string: of length N;.

Clearly, one can gef givenw. Further, the mapping is unique, that is givgnand
k, one can obtaimw. Therefore, the total number of walks with a giveris less than or
equal to the total number of strings of length. The number of strings of lengt; is
2N, Further, the number of differerits which give the same is merely the number of
ways of distributingK identical objects in distinguishable boxes:

(K +1—1)!
Py(K) = Kl =1 (16)

Therefore,q(K; 11, I2), the probability to get exactlX in a SATW extending from-/; to
I, is given by

q(K; 1, Ip) < 2" Py(K)(0.5)Ma . (17)
Using Sterling’s approximation, we have
q(K; 11, I2) < expll(1+log[(K +1)/1]) + K log(a) + I log(B)]. (18)

For K > [, this term tends to zero exponentially. We may, therefore, in the limit write the
inequality (10) as

() =N =Y ull. ey + 1p)? (19)
11=01,=0
whereu(ls, I) is probability that the walk extends froml; to /,:
(x3) = N = C{(lh+12)?). (20)
Since (x3) < ((l1 + 12)?),
$3 = ((1+12)%) > N/Ca. (21)

It is fairly obvious that the average number of distinct points with a SATW will be
less than the number for an ordinary random walk since there is an inward bias at the
extremities (it can also be rigorously proved quite easily). The average of the square of the
number of distinct points traversed by an ordinary random walk i§)OCombining this
fact wth equation (21), we get the result tH&E) o« N. It is also fairly easy to show that
(X2) o (S2). One way of proving this is as follows.

Consider a realization with the extremities-ay and/, with [ = I1 +1, = O(N%%). Let
I, > 14, so thatl, = O(N%9). Let N4 be the last time the SATW hits and letN’ = N — Ny.

After time N1, the SATW behaves exactly like an ordinary random walk when it is at
xi, 0 < x; < [. When the random walk is at;, —/; < x; < 0, there is a possible bias
towards the right in some of the steps. Therefore, the conditional probahility N; 11, I2)

for the SATW is greater than or equal to the conditional probability, N; 1, I5) for the



3040 M A Prasad et al

ordinary random walk of finding the particle at0 < x < I, at time N. It is known that
2 qe(x, N; I, I2)x? o< 13. This combined with the fact that? o N yields the result
X2 o« N asymptotically.
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