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Abstract. We study an attractive random walk called the SATW in one dimension and show
that the walk is diffusive. We show rigorously that asymptoticallyS2

N > CN , whereS2
N is the

average of the square of the number of distinct points visited by the walk inN steps. Since
〈X2

N 〉, the average square of the distance to the origin, is of the same order asS2
N we get the

result that〈X2
N 〉 ∝ N asymptototically.

The self-avoiding walk (SAW), and its variants such as the true self-avoiding walk (TSAW),
the kinetic self-avoiding walk etc, have been extensively studied as models of polymers [1–
9]. In a recent paper Sapozhinikov [10] proposed a kind of attractive random walk (SATW)
in which the probability for making a transition to a neighbouring site is proportional to
exp(−nu), whereu is a negative parameter andn = 1 or 0 depending on whether the site to
which the transition is made has been visited earlier or not. Using plausible approximations,
he showed that the walk was diffusive in one dimension. However, in a recent paper, Fabio
and Aar̃ao Reis [11], obtained results at variance with this. Using a series analysis of
exact enumeration studies up to 30 steps, they came to the conclusion that the walk shows
sub-diffusive behaviour if〈x2

N 〉 ∝ Nν, ν is less than one. Here,xN is the distance travelled
in N steps. According to them the exact value ofν depends on the dimensionality and the
strength of the biasing parameteru. In this paper, we rigorously prove the following:

S2
N > C2N. (1)

Here,S2
N is the average of the square of the number of distinct points visited by an SATW

in N steps in one dimension andC2 is a constant of O(1). Since the walk is attractive,
〈x2
N 〉, the mean square distance afterN steps, is less than or equal toN . We also show

that asymptotically〈X2
N 〉 ∝ S2

N . Combining the two, we get the desired result, namely
〈X2

N 〉 ∝ N .
Let�N be the set of allN step one-dimensional SATWsω = (0, x1, x2, . . . , xN) starting

from zero. Letp(ω) be the probability of the walkω. We then have

xi+1(ω) = xi(ω)+ ξi(ω). (2)

Here,ξi(ω) takes on values+1 or −1:

x2
i+1(ω) = x2

i (ω)+ 1 + 2xi(ω)ξi(ω) (3)

〈x2
i+1〉 = 〈x2

i 〉 + 1 + 2〈xiξi〉. (4)
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Here〈 〉 denotes averaging over the set�:

〈x2
N 〉 = N + 2

N−1∑
i=0

〈xiξi〉. (5)

Then, we have

〈x2
N 〉 = N +

∑
ω∈�

p(ω)

N∑
i=1

xi(ω)ξi(ω). (6)

We note that the average over the second term cancels out for an unbiased ordinary random
walk. The only difference between an SATW and an ordinary random walk occurs when
xi happens to be an extremity that is

eitherxi > xk for k = 0, 1, 2, . . . , i − 1

or xi 6 xk for k = 0, 1, 2, . . . , i − 1. (7)

Using this as well as the fact that whenxi is at an extremity there is a bias for an inward
step, we get the inequality〈x2

N 〉 < N . Further since−|xi(ω)| 6 xi(ω)ξi(ω)

〈x2
N 〉 > N −

∑
ω∈�

p(ω)

N∑
i=1

|xi(ω)|ind(i, ω). (8)

Here ind(i, ω) is a function which takes on values 1 or 0 depending on whether the SATW
is at an extremity ati or not. We rewrite the equation as

〈x2
N 〉 > N −

∞∑
l1=0

∞∑
l2=0

∑
ω∈�l1,l2N

p(ω)

N∑
i=1

|xi(ω)|ind(i, ω). (9)

Here,�l1,l2N is the set of allN step SATWs which extend from−l1 to l2. Clearly, for all
such walks,|xi | 6 (l1 + l2),

〈x2
N 〉 > N −

∞∑
l1=0

∞∑
l2=0

(l1 + l2)
∑

ω∈�l1,l2N

p(ω)

N∑
1

ind(i, ω). (10)

We note that
∑N

1 ind(i, ω)(= K) is nothing but the total number of times the particular
walk took an inward step from an extremity. We now prove thatq(K; l1, l2), the probability
that anN step SATW extending from−l1 to l2 makes exactlyK inward steps at extremities,
satisfies the inequality

q(K; l1, l2) 6 exp[l(1 + log[(K + l)/ l])] +K log(α)+ l log(β)] (11)

whereα = exp(−u)/(1 − exp(−u)) and β = 1/(1 + exp(−u)). Basically, the proof is
based on the fact that if a walk extending from−l1 to l2 takes a total ofK inward steps
at the extremities, theseK steps as well asl outward steps are fixed. It has at most two
options in the remainingN −K − l steps. So, the total number of such walks is less than
2(N−K−l)PN(K). Here,PN(K) is the number of ways of distributing theK inward steps
among thel lattice sites from−l1 to l2.

More formally, let�k̄,l1,l2N be the set of allN step SATWsω = (0, x1, x2, . . . , xN) with
the following constraints

l2 = sup
16i6N

xi − l1 = inf
16i6N

xi (12)

k̄ = (k−l1, k−l1 + 1, . . . , k−1, k1, . . . , kl2) (13)
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wherekl is the number of stepsl to l − 1 (respectivelyl + 1) taken by the walk before
the first stepl to l + 1 (respectivelyl − 1) whenl is positive (respectively negative). We
consider all such walks with the additional restriction that

l2∑
l=−l1

kl = K. (14)

All such walks can be mapped to stringsψ̄ of lengthN1(= N −K − l) as follows. Define

ψ̄ = (ψ1, ψ2, . . . , ψN1) (15)

where theψi take on values+1 or −1 only. A string ξ̄ = (ξ1, ξ2, . . . , ξN) can easily be
generated withξi = xi − xi−1. From this string of lengthN , we delete the entriesξi for
which xi−1 is an extremity of the walkω to generate a strinḡψ of lengthN1.

Clearly, one can get̄ψ given ω. Further, the mapping is unique, that is givenψ̄ and
k̄, one can obtainω. Therefore, the total number of walks with a givenk̄ is less than or
equal to the total number of strings of lengthN1. The number of strings of lengthN1 is
2N1. Further, the number of different̄k’s which give the sameK is merely the number of
ways of distributingK identical objects inl distinguishable boxes:

PN(K) = (K + l − 1)!

K!(l − 1)!
. (16)

Therefore,q(K; l1, l2), the probability to get exactlyK in a SATW extending from−l1 to
l2, is given by

q(K; l1, l2) 6 2N1PN(K)(0.5)
N1αKβl. (17)

Using Sterling’s approximation, we have

q(K; l1, l2) 6 exp[l(1 + log[(K + l)/ l])+K log(α)+ l log(β)]. (18)

ForK � l, this term tends to zero exponentially. We may, therefore, in the limit write the
inequality (10) as

〈x2
N 〉 > N −

∞∑
l1=0

∞∑
l2=0

u(l1, l2)c(l1 + l2)
2 (19)

whereu(l1, l2) is probability that the walk extends from−l1 to l2:

〈x2
N 〉 > N − C〈(l1 + l2)

2〉. (20)

Since〈x2
N 〉 6 〈(l1 + l2)

2〉,
S2
N = 〈(l1 + l2)

2〉 > N/C2. (21)

It is fairly obvious that the average number of distinct points with a SATW will be
less than the number for an ordinary random walk since there is an inward bias at the
extremities (it can also be rigorously proved quite easily). The average of the square of the
number of distinct points traversed by an ordinary random walk is O(N ). Combining this
fact wth equation (21), we get the result that〈S2

N 〉 ∝ N . It is also fairly easy to show that
〈X2

N 〉 ∝ 〈S2
N 〉. One way of proving this is as follows.

Consider a realization with the extremities at−l1 andl2 with l = l1 + l2 = O(N0.5). Let
l2 > l1, so thatl2 = O(N0.5). LetN1 be the last time the SATW hitsl2 and letN ′ = N−N1.
After time N1, the SATW behaves exactly like an ordinary random walk when it is at
xi, 0 < xi < l2. When the random walk is atxi,−l1 6 xi 6 0, there is a possible bias
towards the right in some of the steps. Therefore, the conditional probabilitypc(x,N; l1, l2)
for the SATW is greater than or equal to the conditional probabilityqc(x,N; l1, l2) for the



3040 M A Prasad et al

ordinary random walk of finding the particle atx, 0 < x < l2 at timeN . It is known that∑l2
x=0 qc(x,N; l1, l2)x2 ∝ l22. This combined with the fact thatS2

N ∝ N yields the result
X2
N ∝ N asymptotically.
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