Diffusive behaviour of self-attractive walks

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys. A: Math. Gen. 293037
(http://iopscience.iop.org/0305-4470/29/12/011)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.70
The article was downloaded on 02/06/2010 at 03:53

Please note that terms and conditions apply.

Diffusive behaviour of self-attractive walks

M A Prasad, D P Bhatia and D Arora
Radiological Physics Division, Bhabha Atomic Research Centre, Trombay, Bombay - 400085, India

Received 25 January 1996, in final form 22 March 1996

Abstract

We study an attractive random walk called the SATW in one dimension and show that the walk is diffusive. We show rigorously that asymptotically $S_{N}^{2} \geqslant C N$, where S_{N}^{2} is the average of the square of the number of distinct points visited by the walk in N steps. Since $\left\langle X_{N}^{2}\right\rangle$, the average square of the distance to the origin, is of the same order as S_{N}^{2} we get the result that $\left\langle X_{N}^{2}\right\rangle \propto N$ asymptototically.

The self-avoiding walk (SAW), and its variants such as the true self-avoiding walk (TSAW), the kinetic self-avoiding walk etc, have been extensively studied as models of polymers [19]. In a recent paper Sapozhinikov [10] proposed a kind of attractive random walk (SATW) in which the probability for making a transition to a neighbouring site is proportional to $\exp (-n u)$, where u is a negative parameter and $n=1$ or 0 depending on whether the site to which the transition is made has been visited earlier or not. Using plausible approximations, he showed that the walk was diffusive in one dimension. However, in a recent paper, Fabio and Aarão Reis [11], obtained results at variance with this. Using a series analysis of exact enumeration studies up to 30 steps, they came to the conclusion that the walk shows sub-diffusive behaviour if $\left\langle x_{N}^{2}\right\rangle \propto N^{v}, v$ is less than one. Here, x_{N} is the distance travelled in N steps. According to them the exact value of v depends on the dimensionality and the strength of the biasing parameter u. In this paper, we rigorously prove the following:

$$
\begin{equation*}
S_{N}^{2} \geqslant C_{2} N \tag{1}
\end{equation*}
$$

Here, S_{N}^{2} is the average of the square of the number of distinct points visited by an SATW in N steps in one dimension and C_{2} is a constant of $\mathrm{O}(1)$. Since the walk is attractive, $\left\langle x_{N}^{2}\right\rangle$, the mean square distance after N steps, is less than or equal to N. We also show that asymptotically $\left\langle X_{N}^{2}\right\rangle \propto S_{N}^{2}$. Combining the two, we get the desired result, namely $\left\langle X_{N}^{2}\right\rangle \propto N$.

Let Ω_{N} be the set of all N step one-dimensional SATWs $\omega=\left(0, x_{1}, x_{2}, \ldots, x_{N}\right)$ starting from zero. Let $p(\omega)$ be the probability of the walk ω. We then have

$$
\begin{equation*}
x_{i+1}(\omega)=x_{i}(\omega)+\xi_{i}(\omega) \tag{2}
\end{equation*}
$$

Here, $\xi_{i}(\omega)$ takes on values +1 or -1 :

$$
\begin{align*}
& x_{i+1}^{2}(\omega)=x_{i}^{2}(\omega)+1+2 x_{i}(\omega) \xi_{i}(\omega) \tag{3}\\
& \left\langle x_{i+1}^{2}\right\rangle=\left\langle x_{i}^{2}\right\rangle+1+2\left\langle x_{i} \xi_{i}\right\rangle . \tag{4}
\end{align*}
$$

Here \rangle denotes averaging over the set Ω :

$$
\begin{equation*}
\left\langle x_{N}^{2}\right\rangle=N+2 \sum_{i=0}^{N-1}\left\langle x_{i} \xi_{i}\right\rangle \tag{5}
\end{equation*}
$$

Then, we have

$$
\begin{equation*}
\left\langle x_{N}^{2}\right\rangle=N+\sum_{\omega \in \Omega} p(\omega) \sum_{i=1}^{N} x_{i}(\omega) \xi_{i}(\omega) \tag{6}
\end{equation*}
$$

We note that the average over the second term cancels out for an unbiased ordinary random walk. The only difference between an SATW and an ordinary random walk occurs when x_{i} happens to be an extremity that is

$$
\begin{align*}
& \text { either } x_{i} \geqslant x_{k} \quad \text { for } k=0,1,2, \ldots, i-1 \\
& \text { or } x_{i} \leqslant x_{k} \tag{7}
\end{align*} \quad \text { for } k=0,1,2, \ldots, i-1 .
$$

Using this as well as the fact that when x_{i} is at an extremity there is a bias for an inward step, we get the inequality $\left\langle x_{N}^{2}\right\rangle<N$. Further since $-\left|x_{i}(\omega)\right| \leqslant x_{i}(\omega) \xi_{i}(\omega)$

$$
\begin{equation*}
\left\langle x_{N}^{2}\right\rangle \geqslant N-\sum_{\omega \in \Omega} p(\omega) \sum_{i=1}^{N}\left|x_{i}(\omega)\right| \operatorname{ind}(i, \omega) . \tag{8}
\end{equation*}
$$

Here $\operatorname{ind}(i, \omega)$ is a function which takes on values 1 or 0 depending on whether the SATW is at an extremity at i or not. We rewrite the equation as

$$
\begin{equation*}
\left\langle x_{N}^{2}\right\rangle \geqslant N-\sum_{l_{1}=0}^{\infty} \sum_{l_{2}=0}^{\infty} \sum_{\omega \in \Omega_{N}^{l_{N}, l_{2}}} p(\omega) \sum_{i=1}^{N}\left|x_{i}(\omega)\right| \operatorname{ind}(i, \omega) \tag{9}
\end{equation*}
$$

Here, $\Omega_{N}^{l_{1}, l_{2}}$ is the set of all N step SATWs which extend from $-l_{1}$ to l_{2}. Clearly, for all such walks, $\left|x_{i}\right| \leqslant\left(l_{1}+l_{2}\right)$,

$$
\begin{equation*}
\left\langle x_{N}^{2}\right\rangle \geqslant N-\sum_{l_{1}=0}^{\infty} \sum_{l_{2}=0}^{\infty}\left(l_{1}+l_{2}\right) \sum_{\omega \in \Omega_{N}^{l_{1}, l_{2}}} p(\omega) \sum_{1}^{N} \operatorname{ind}(i, \omega) \tag{10}
\end{equation*}
$$

We note that $\sum_{1}^{N} \operatorname{ind}(i, \omega)(=K)$ is nothing but the total number of times the particular walk took an inward step from an extremity. We now prove that $q\left(K ; l_{1}, l_{2}\right)$, the probability that an N step SATW extending from $-l_{1}$ to l_{2} makes exactly K inward steps at extremities, satisfies the inequality

$$
\begin{equation*}
\left.q\left(K ; l_{1}, l_{2}\right) \leqslant \exp [l(1+\log [(K+l) / l])]+K \log (\alpha)+l \log (\beta)\right] \tag{11}
\end{equation*}
$$

where $\alpha=\exp (-u) /(1-\exp (-u))$ and $\beta=1 /(1+\exp (-u))$. Basically, the proof is based on the fact that if a walk extending from $-l_{1}$ to l_{2} takes a total of K inward steps at the extremities, these K steps as well as l outward steps are fixed. It has at most two options in the remaining $N-K-l$ steps. So, the total number of such walks is less than $2^{(N-K-l)} P_{N}(K)$. Here, $P_{N}(K)$ is the number of ways of distributing the K inward steps among the l lattice sites from $-l_{1}$ to l_{2}.

More formally, let $\Omega_{N}^{\bar{k}, l_{1}, l_{2}}$ be the set of all N step SATWs $\omega=\left(0, x_{1}, x_{2}, \ldots, x_{N}\right)$ with the following constraints

$$
\begin{align*}
& l_{2}=\sup _{1 \leqslant i \leqslant N} x_{i} \quad-l_{1}=\inf _{1 \leqslant i \leqslant N} x_{i} \tag{12}\\
& \bar{k}=\left(k_{-l_{1}}, k-l_{1}+1, \ldots, k_{-1}, k_{1}, \ldots, k_{l_{2}}\right) \tag{13}
\end{align*}
$$

where k_{l} is the number of steps l to $l-1$ (respectively $l+1$) taken by the walk before the first step l to $l+1$ (respectively $l-1$) when l is positive (respectively negative). We consider all such walks with the additional restriction that

$$
\begin{equation*}
\sum_{l=-l_{1}}^{l_{2}} k_{l}=K \tag{14}
\end{equation*}
$$

All such walks can be mapped to strings $\bar{\psi}$ of length $N_{1}(=N-K-l)$ as follows. Define

$$
\begin{equation*}
\bar{\psi}=\left(\psi_{1}, \psi_{2}, \ldots, \psi_{N_{1}}\right) \tag{15}
\end{equation*}
$$

where the ψ_{i} take on values +1 or -1 only. A string $\bar{\xi}=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{N}\right)$ can easily be generated with $\xi_{i}=x_{i}-x_{i-1}$. From this string of length N, we delete the entries ξ_{i} for which x_{i-1} is an extremity of the walk ω to generate a string $\bar{\psi}$ of length N_{1}.

Clearly, one can get $\bar{\psi}$ given ω. Further, the mapping is unique, that is given $\bar{\psi}$ and \bar{k}, one can obtain ω. Therefore, the total number of walks with a given \bar{k} is less than or equal to the total number of strings of length N_{1}. The number of strings of length N_{1} is $2^{N_{1}}$. Further, the number of different \bar{k} 's which give the same K is merely the number of ways of distributing K identical objects in l distinguishable boxes:

$$
\begin{equation*}
P_{N}(K)=\frac{(K+l-1)!}{K!(l-1)!} \tag{16}
\end{equation*}
$$

Therefore, $q\left(K ; l_{1}, l_{2}\right)$, the probability to get exactly K in a SATW extending from $-l_{1}$ to l_{2}, is given by

$$
\begin{equation*}
q\left(K ; l_{1}, l_{2}\right) \leqslant 2^{N_{1}} P_{N}(K)(0.5)^{N_{1}} \alpha^{K} \beta^{l} \tag{17}
\end{equation*}
$$

Using Sterling's approximation, we have

$$
\begin{equation*}
q\left(K ; l_{1}, l_{2}\right) \leqslant \exp [l(1+\log [(K+l) / l])+K \log (\alpha)+l \log (\beta)] \tag{18}
\end{equation*}
$$

For $K \gg l$, this term tends to zero exponentially. We may, therefore, in the limit write the inequality (10) as

$$
\begin{equation*}
\left\langle x_{N}^{2}\right\rangle \geqslant N-\sum_{l_{1}=0}^{\infty} \sum_{l_{2}=0}^{\infty} u\left(l_{1}, l_{2}\right) c\left(l_{1}+l_{2}\right)^{2} \tag{19}
\end{equation*}
$$

where $u\left(l_{1}, l_{2}\right)$ is probability that the walk extends from $-l_{1}$ to l_{2} :

$$
\begin{equation*}
\left\langle x_{N}^{2}\right\rangle \geqslant N-C\left\langle\left(l_{1}+l_{2}\right)^{2}\right\rangle \tag{20}
\end{equation*}
$$

Since $\left\langle x_{N}^{2}\right\rangle \leqslant\left\langle\left(l_{1}+l_{2}\right)^{2}\right\rangle$,

$$
\begin{equation*}
S_{N}^{2}=\left\langle\left(l_{1}+l_{2}\right)^{2}\right\rangle>N / C_{2} \tag{21}
\end{equation*}
$$

It is fairly obvious that the average number of distinct points with a SATW will be less than the number for an ordinary random walk since there is an inward bias at the extremities (it can also be rigorously proved quite easily). The average of the square of the number of distinct points traversed by an ordinary random walk is $\mathrm{O}(N)$. Combining this fact wth equation (21), we get the result that $\left\langle S_{N}^{2}\right\rangle \propto N$. It is also fairly easy to show that $\left\langle X_{N}^{2}\right\rangle \propto\left\langle S_{N}^{2}\right\rangle$. One way of proving this is as follows.

Consider a realization with the extremities at $-l_{1}$ and l_{2} with $l=l_{1}+l_{2}=\mathrm{O}\left(N^{0.5}\right)$. Let $l_{2} \geqslant l_{1}$, so that $l_{2}=\mathrm{O}\left(N^{0.5}\right)$. Let N_{1} be the last time the SATW hits l_{2} and let $N^{\prime}=N-N_{1}$. After time N_{1}, the SATW behaves exactly like an ordinary random walk when it is at $x_{i}, 0<x_{i}<l_{2}$. When the random walk is at $x_{i},-l_{1} \leqslant x_{i} \leqslant 0$, there is a possible bias towards the right in some of the steps. Therefore, the conditional probability $p_{\mathrm{c}}\left(x, N ; l_{1}, l_{2}\right)$ for the SATW is greater than or equal to the conditional probability $q_{\mathrm{c}}\left(x, N ; l_{1}, l_{2}\right)$ for the
ordinary random walk of finding the particle at $x, 0<x<l_{2}$ at time N. It is known that $\sum_{x=0}^{l_{2}} q_{\mathrm{c}}\left(x, N ; l_{1}, l_{2}\right) x^{2} \propto l_{2}^{2}$. This combined with the fact that $S_{N}^{2} \propto N$ yields the result $X_{N}^{2} \propto N$ asymptotically.

References

[1] de Gennes P G 1979 Scaling Concepts of Polymer Physics (Ithaca, NY: Cornell University Press)
[2] Flory P J 1971 Principles of Polymer Chemistry (Ithaca, NY: Cornell University Press)
[3] Amit D J, Parisi G and Pelliti L 1983 Phys. Rev. B 271653
[4] Stella A L, de Queiroz S L A, Duxbury P B and Stinchcombe R B 1984 J. Phys. A: Math. Gen. 171903
[5] Tóth B 1994 Ann. Prob. to appear
[6] Tóth B 1994 J. Stat. Phys. 7717
[7] Domb C and Joyce G S 1972 J. Phys. C: Solid State Phys. 5956
[8] Stanley H E, Kang K, Redner S and Bleumberg R L 1983 Phys. Rev. Lett. 511223
[9] Redner S and Kang K 1983 Phys. Rev. Lett. 511729
[10] Sapozhinikov V B 1994 J. Phys. A: Math. Gen. 27 L151
[11] Aarão Reis F D A 1995 J. Phys. A: Math. Gen. 283851

